Schedule

This is an estimated schedule for the pipeline project. The project must be permitted, surveyed and designed before we can create a detailed schedule. The current high-level schedule for this project is:

- **Spring 2016** – Begin survey and project design
- **Summer 2016** – Apply for permits, continue design and begin easement request
- **Spring 2017** – Complete design
- **Summer 2017** – Construction begins
- **Fall 2018** – Construction complete

*Note: The construction schedule may span 16 months, but individual properties will be affected for a much shorter time period – likely three to six weeks or less, depending on the size of the property.

Acquiring Easements

Easements are legal agreements that give Duke Energy the right to use specific portions of land for certain purposes. Easement fees are determined through discussions between Duke Energy and property owners at fair market rates, depending on the size and location of the easement. When terms of the easement are reached, a legal document is drawn up and signed by both parties. Easements will be needed to give Duke Energy access to property to construct and maintain the proposed pipeline. The property owner will maintain ownership of the property, subject to the rights granted to Duke Energy. A Duke Energy representative will contact property owners where easements are needed and work with these owners to resolve any special concerns, such as replacing grass, trees or other features. The signed legal document will be recorded at the appropriate county courthouse.

Project Summary

Natural gas has been available in the Cincinnati area since 1837, and historically, statistics show that pipelines are the safest mode of energy transportation.

In 2015, Duke Energy completed an extensive study of our gas supply system that serves over 500,000 customer accounts in Ohio and Kentucky. The focus of this study was the array of high-pressure steel pipelines that have been installed over the past half century or more to deliver gas into the distribution system for our customers. As Duke Energy looks to the future, we believe a Plan to Improve, Protect and Expand our System (PIPES) is essential for our current and future customers.

The proposed Central Corridor Pipeline Extension is a 30-inch steel natural gas pipeline that will run from an existing gas transmission line near the intersection of Hamilton, Butler and Warren counties and end in either the Norwood or the Fairfax area. The line will transverse approximately 12 miles through northern Cincinnati/central Hamilton County.

The pipeline will enhance the reliability of the system. It will do so by maintaining consistent pressures and providing for operational efficiencies and configurations. These will allow for reliable balance of supply and reduce dependencies on gas transmission lines in Kentucky as well as propane peaking facilities.

We're expecting construction to start in the summer of 2017 and be complete by the fall of 2018. Although construction over the approximate 12-mile route will take several months, pipeline construction on each property should take approximately three to six weeks. Timing may vary depending on the size of the property.
Summary
This project is part of a larger project designed to improve, protect and expand our system for current and future customers. This pipeline extension project will enhance gas supply reliability and flexibility across the system, replace and modernize aging infrastructure and position Duke Energy to supply growing demand for natural gas in southwest Ohio.

If you have any specific questions about this project, please contact us at: CentCorridorPipeline@duke-energy.com or 513.287.2130

For general information about natural gas, please visit the American Gas Association’s website: www.aga.org

Restoration of Property
Fields, lawns, sidewalks, landscaping and some roadways will be disrupted temporarily during construction of the pipeline. Any property disturbed by the construction will be restored to its pre-existing condition or better by Duke Energy. A video of the pipeline route will be taken before any digging begins and will be used to guide restoration. All of this will be discussed in easement agreements between property owners and Duke Energy. After the pipeline has been constructed, owners can use their property as before, with a few exceptions. Roadways and sidewalks may be built within the easement as long as the existing grade is not changed. Other large permanent structures such as homes, garages and swimming pools are not allowed because Duke Energy needs to maintain access for inspections and required maintenance to the pipeline. Specifics of property restoration will be discussed during easement discussions.

Note: For most properties, the proposed pipe will be placed inside the building setback limit — the area in which zoning would not allow structures to be built.

Modern Safety Features
State-of-the-art construction materials, pipeline corrosion protection, welding techniques and other safety features will be designed into the Central Corridor Extension natural gas pipeline. For example, the outside of each pipe section is coated with a hard, green epoxy film that prevents corrosion. Before each pipe section is installed, this coating will be carefully inspected in the field to make sure it has no flaws or defects. All welded joints between pipe sections will be X-rayed to make sure they meet strict industry standards.

Welds will then be sealed with a coating to prevent corrosion. When construction is complete, the inside of the pipeline will be cleaned using a scrubber that removes dust, scale, water and other debris. Finally, the new pipeline will be pressure tested with air and water to make sure there are no leaks or weaknesses in the pipeline. When the pipeline has passed all of these safety checks it will be ready to receive natural gas. Once in operation, the pipeline will be inspected regularly for leaks, and the ground will be monitored for potential soil erosion.

Construction Sequence
This pipeline will be completed in several phases of construction. First, the pipeline route will be marked off with survey stakes. Then, excavating equipment will begin digging a trench where the pipeline will eventually be installed. When a portion of the trench has been dug, several sections of pipe will be welded together. Excavating equipment outfitted with lifting straps will pick up the long sections of welded pipe and place them in the trench. When the entire pipeline has been connected and all of the safety checks are complete, the pipeline will be covered with backfill material and the ground surface will be restored. Finally, the pipeline will be strength tested and pressurized.

Pipeline Facts

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Approximately 12 miles</td>
</tr>
<tr>
<td>Diameter</td>
<td>30 inches</td>
</tr>
<tr>
<td>Material</td>
<td>Welded carbon steel with a fusion-bonded epoxy coating</td>
</tr>
<tr>
<td>Depth</td>
<td>Typically installed 4 feet (3 feet minimum) below grade</td>
</tr>
<tr>
<td>Backfill</td>
<td>Controlled density fill (road right of way) or replaced excavated soil materials</td>
</tr>
<tr>
<td>Construction</td>
<td>Approximate 40-foot pipe sections welded together</td>
</tr>
</tbody>
</table>

Proposed Routes